Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2563, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519460

RESUMO

Numerous studies have demonstrated the correlation between human gut bacteria and host physiology, mediated primarily via nuclear receptors (NRs). Despite this body of work, the systematic identification and characterization of microbe-derived ligands that regulate NRs remain a considerable challenge. In this study, we discover a series of diindole molecules produced from commensal bacteria metabolites that act as specific agonists for the orphan constitutive androstane receptor (CAR). Using various biophysical analyses we show that their nanomolar affinities are comparable to those of synthetic CAR agonists, and that they can activate both rodent and human CAR orthologues, which established synthetic agonists cannot. We also find that the diindoles, diindolylmethane (DIM) and diindolylethane (DIE) selectively up-regulate bona fide CAR target genes in primary human hepatocytes and mouse liver without causing significant side effects. These findings provide new insights into the complex interplay between the gut microbiome and host physiology, as well as new tools for disease treatment.


Assuntos
Receptor Constitutivo de Androstano , Microbiota , Camundongos , Animais , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Hepatócitos/metabolismo , Ligantes
2.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37373366

RESUMO

The foraging (for) gene of Drosophila melanogaster encodes a cGMP-dependent protein kinase (PKG), which is a major effector of the cGMP signaling pathway involved in the regulation of behaviour and metabolic traits. Despite being well studied at the transcript level, little is known about the for gene at the protein level. Here, we provide a detailed characterization of the for gene protein (FOR) products and present new tools for their study, including five isoform-specific antibodies and a transgenic strain that carries an HA-labelled for allele (forBAC::HA). Our results showed that multiple FOR isoforms were expressed in the larval and adult stages of D. melanogaster and that the majority of whole-body FOR expression arises from three (P1, P1α, and P3) of eight putative protein isoforms. We found that FOR expression differed between the larval and adult stages and between the dissected larval organs we analyzed, which included the central nervous system (CNS), fat body, carcass, and intestine. Moreover, we showed that the FOR expression differed between two allelic variants of the for gene, namely, fors (sitter) and forR (rover), that are known to differ in many food-related traits. Together, our in vivo identification of FOR isoforms and the existence of temporal, spatial, and genetic differences in their expression lay the groundwork for determining their functional significance.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/metabolismo , Comportamento Alimentar/fisiologia , Animais Geneticamente Modificados , Fenótipo , Isoformas de Proteínas/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
3.
Nature ; 618(7963): 102-109, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225985

RESUMO

Parasitic nematodes are a major threat to global food security, particularly as the world amasses 10 billion people amid limited arable land1-4. Most traditional nematicides have been banned owing to poor nematode selectivity, leaving farmers with inadequate means of pest control4-12. Here we use the model nematode Caenorhabditis elegans to identify a family of selective imidazothiazole nematicides, called selectivins, that undergo cytochrome-p450-mediated bioactivation in nematodes. At low parts-per-million concentrations, selectivins perform comparably well with commercial nematicides to control root infection by Meloidogyne incognita, a highly destructive plant-parasitic nematode. Tests against numerous phylogenetically diverse non-target systems demonstrate that selectivins are more nematode-selective than most marketed nematicides. Selectivins are first-in-class bioactivated nematode controls that provide efficacy and nematode selectivity.


Assuntos
Antinematódeos , Tylenchoidea , Animais , Humanos , Antinematódeos/química , Antinematódeos/metabolismo , Antinematódeos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/metabolismo , Tiazóis/química , Tiazóis/metabolismo , Tiazóis/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/parasitologia , Doenças das Plantas , Especificidade da Espécie , Especificidade por Substrato
4.
Sci Signal ; 15(741): eabo1857, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35857636

RESUMO

The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα) is emerging as an important target in the brain for the treatment or prevention of cognitive disorders. The identification of high-affinity ligands for brain PPARα may reveal the mechanisms underlying the synaptic effects of this receptor and facilitate drug development. Here, using an affinity purification-untargeted mass spectrometry (AP-UMS) approach, we identified an endogenous, selective PPARα ligand, 7(S)-hydroxy-docosahexaenoic acid [7(S)-HDHA]. Results from mass spectrometric detection of 7(S)-HDHA in mouse and rat brain tissues, time-resolved FRET analyses, and thermal shift assays collectively revealed that 7(S)-HDHA potently activated PPARα with an affinity greater than that of other ligands identified to date. We also found that 7(S)-HDHA activation of PPARα in cultured mouse cortical neurons stimulated neuronal growth and arborization, as well as the expression of genes associated with synaptic plasticity. The findings suggest that this DHA derivative supports and enhances neuronal synaptic capacity in the brain.


Assuntos
Ácidos Graxos Ômega-3 , PPAR alfa , Animais , Camundongos , Ratos , Encéfalo/metabolismo , Ligantes , Neurônios/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo
5.
PLoS Genet ; 17(8): e1009728, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34403408

RESUMO

Dosage compensation equalizes X-linked expression between XY males and XX females. In male fruit flies, expression levels of the X-chromosome are increased approximately two-fold to compensate for their single X chromosome. In testis, dosage compensation is thought to cease during meiosis; however, the timing and degree of the resulting transcriptional suppression is difficult to separate from global meiotic downregulation of each chromosome. To address this, we analyzed testis single-cell RNA-sequencing (scRNA-seq) data from two Drosophila melanogaster strains. We found evidence that the X chromosome is equally transcriptionally active as autosomes in somatic and pre-meiotic cells, and less transcriptionally active than autosomes in meiotic and post-meiotic cells. In cells experiencing dosage compensation, close proximity to MSL (male-specific lethal) chromatin entry sites (CES) correlates with increased X chromosome transcription. We found low or undetectable levels of germline expression of most msl genes, mle, roX1 and roX2 via scRNA-seq and RNA-FISH, and no evidence of germline nuclear roX1/2 localization. Our results suggest that, although dosage compensation occurs in somatic and pre-meiotic germ cells in Drosophila testis, there might be non-canonical factors involved in the dosage compensation mechanism. The single-cell expression patterns and enrichment statistics of detected genes can be explored interactively in our database: https://zhao.labapps.rockefeller.edu/gene-expr/.


Assuntos
Mecanismo Genético de Compensação de Dose/genética , Testículo/metabolismo , Cromossomo X/genética , Animais , Sequência de Bases/genética , Quinase do Ponto de Checagem 2/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Proteínas de Drosophila/genética , Genes Ligados ao Cromossomo X , Células Germinativas/metabolismo , Masculino , Meiose/genética , Proteínas Nucleares/genética , RNA/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Fatores de Transcrição/genética , Transcrição Gênica , Cromossomo X/metabolismo
6.
Environ Health Perspect ; 129(7): 77004, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34288731

RESUMO

BACKGROUND: Thousands of per- and polyfluoroalkyl substances (PFAS) with diverse structures have been detected in the ambient environment. Apart from a few well-studied PFAS, the structure-related toxicokinetics of a broader set of PFAS remain unclear. OBJECTIVES: To understand the toxicokinetics of PFAS, we attempted to characterize the metabolism pathways of 74 structurally diverse PFAS samples from the U.S. Environmental Protection Agency's PFAS screening library. METHODS: Using the early life stages of zebrafish (Danio rerio) as a model, we determined the bioconcentration factors and phenotypic toxicities of 74 PFAS. Then, we applied high-resolution mass spectrometry-based nontargeted analysis to identify metabolites of PFAS in zebrafish larvae after 5 d of exposure by incorporating retention time and mass spectra. In vitro enzymatic activity experiments with human recombinant liver carboxylesterase (hCES1) were employed to validate the structure-related hydrolysis of 11 selected PFAS. RESULTS: Our findings identified five structural categories of PFAS prone to metabolism. The metabolism pathways of PFAS were highly related to their structures as exemplified by fluorotelomer alcohols that the predominance of ß-oxidation or taurine conjugation pathways were primarily determined by the number of hydrocarbons. Hydrolysis was identified as a major metabolism pathway for diverse PFAS, and perfluoroalkyl carboxamides showed the highest in vivo hydrolysis rates, followed by carboxyesters and sulfonamides. The hydrolysis of PFAS was verified with recombinant hCES1, with strong substrate preferences toward perfluoroalkyl carboxamides. CONCLUSIONS: We suggest that the roadmap of the structure-related metabolism pathways of PFAS established in this study would provide a starting point to inform the potential health risks of other PFAS. https://doi.org/10.1289/EHP7169.


Assuntos
Fluorocarbonos , Peixe-Zebra , Animais , Fluorocarbonos/análise , Espectrometria de Massas , Toxicocinética
8.
Dev Biol ; 465(2): 144-156, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32697972

RESUMO

The zebrafish model organism has been of exceptional utility for the study of vertebrate development and disease through the application of tissue-specific labelling and overexpression of genes carrying patient-derived mutations. However, there remains a need for a binary expression system that is both non-toxic and not silenced over animal generations by DNA methylation. The Q binary expression system derived from the fungus Neurospora crassa is ideal, because the consensus binding site for the QF transcription factor lacks CpG dinucleotides, precluding silencing by CpG-meditated methylation. To optimize this system for zebrafish, we systematically tested several variants of the QF transcription factor: QF full length; QF2, which lacks the middle domain; QF2w, which is an attenuated version of QF2; and chimeric QFGal4. We found that full length QF and QF2 were strongly toxic to zebrafish embryos, QF2w was mildly toxic, and QFGal4 was well tolerated, when injected as RNA or expressed ubiquitously from stable transgenes. In addition, QFGal4 robustly activated a Tg(QUAS:GFPNLS) reporter transgene. To increase the utility of this system, we also modified the QF effector sequence termed QUAS, which consists of five copies of the QF binding site. Specifically, we decreased both the CpG dinucleotide content, as well as the repetitiveness of QUAS, to reduce the risk of transgene silencing via CpG methylation. Moreover, these modifications to QUAS removed leaky QF-independent neural expression that we detected in the original QUAS sequence. To demonstrate the utility of our QF optimizations, we show how the Q-system can be used for lineage tracing using a Cre-dependent Tg(ubi:QFGal4-switch) transgene. We also demonstrate that QFGal4 can be used in transient injections to tag and label endogenous genes by knocking in QFGal4 into sox2 and ubiquitin C genes.


Assuntos
Animais Geneticamente Modificados , Expressão Gênica , Neurospora crassa/genética , Proteínas de Protozoários , Fatores de Transcrição , Peixe-Zebra , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
9.
Environ Sci Technol ; 54(7): 4421-4431, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32146810

RESUMO

Brominated azo dyes (BADs) have been identified as predominant indoor brominated pollutants in daycare dust; thus, their potential health risk to children is of concern. However, the toxicities of BADs remain elusive. In this study, the toxicokinetics of two predominant BADs, Disperse Blue 373 (DB373) and Disperse Violet 93 (DV93), and their suspect metabolite 2-bromo-4,6-dinitroaniline (BDNA) was investigated in embryos of zebrafish (Danio rerio). The bioconcentration factor of DV93 at 120 hpf is 6.2-fold lower than that of DB373. The nontarget analysis revealed distinct metabolism routes between DB373 and DV93 by reducing nitro groups to nitroso (DB373) or amine (DV93), despite their similar structures. NAD(P)H quinone oxidoreductase 1 (NQO1) and pyruvate dehydrogenase were predicted as the enzymes responsible for the reduction of DB373 and DV93 by correlating time courses of the metabolites and enzyme development. Further in vitro recombinant enzyme and in vivo inhibition results validated NQO1 as the enzyme specifically reducing DB373, but not DV93. Global proteome profiling revealed that the expression levels of proteins from the "apoptosis-induced DNA fragmentation" pathway were significantly upregulated by all three BADs, supporting the bioactivation of BADs to mutagenic aromatic amines. This study discovered the bioactivation of BADs via distinct eukaryotic enzymes, implying their potential health risks.


Assuntos
Compostos Azo , Peixe-Zebra , Animais , Criança , Poeira , Embrião não Mamífero , Humanos , Mutagênicos , Toxicocinética
10.
G3 (Bethesda) ; 10(1): 117-127, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31649045

RESUMO

We have investigated the relationship between the function of the gene hindsight (hnt), which is the Drosophila homolog of Ras Responsive Element Binding protein-1 (RREB-1), and the EGFR signaling pathway. We report that hnt mutant embryos are defective in EGFR signaling dependent processes, namely chordotonal organ recruitment and oenocyte specification. We also show the temperature sensitive hypomorphic allele hntpebbled is enhanced by the hypomorphic MAPK allele rolled (rl1 ). We find that hnt overexpression results in ectopic DPax2 expression within the embryonic peripheral nervous system, and we show that this effect is EGFR-dependent. Finally, we show that the canonical U-shaped embryonic lethal phenotype of hnt, which is associated with premature degeneration of the extraembyonic amnioserosa and a failure in germ band retraction, is rescued by expression of several components of the EGFR signaling pathway (sSpi, Ras85DV12 , pntP1 ) as well as the caspase inhibitor p35 Based on this collection of corroborating evidence, we suggest that an overarching function of hnt involves the positive regulation of EGFR signaling.


Assuntos
Proteínas de Drosophila/genética , Receptores ErbB/metabolismo , Proteínas Nucleares/genética , Transdução de Sinais , Fatores de Transcrição/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camadas Germinativas/embriologia , Camadas Germinativas/metabolismo , Proteínas Nucleares/metabolismo , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo , Fatores de Transcrição/metabolismo
11.
Trends Genet ; 35(12): 892-902, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31662190

RESUMO

Our recent ability to sequence entire genomes, along with all of their transcribed RNAs, has led to the surprising finding that only ∼1% of the human genome is used to encode proteins. This finding has led to vigorous debate over the functional importance of the transcribed but untranslated portions of the genome. Currently, scientists tend to assume coding genes are functional until proven not to be, while the opposite is true for noncoding genes. This review takes a new look at the evidence for and against widespread noncoding gene functionality. We focus in particular on long noncoding RNA (noncoding RNAs longer than 200 nucleotides) genes and their 'junk' associates, transposable elements, and satellite repeats. Taken together, the suggestion put forward is that more of this junk DNA may be functional than nonfunctional and that noncoding RNAs and transposable elements act symbiotically to drive evolution.


Assuntos
Evolução Molecular , Sequências Repetitivas Dispersas , RNA Longo não Codificante/genética , Animais , DNA Intergênico , Estudos de Associação Genética , Genoma , Genômica/métodos , Humanos , Fenótipo , Espermatogênese
12.
PLoS Pathog ; 15(3): e1007597, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30921435

RESUMO

Cryptococcus neoformans is one of the leading causes of invasive fungal infection in humans worldwide. C. neoformans uses macrophages as a proliferative niche to increase infective burden and avoid immune surveillance. However, the specific mechanisms by which C. neoformans manipulates host immunity to promote its growth during infection remain ill-defined. Here we demonstrate that eicosanoid lipid mediators manipulated and/or produced by C. neoformans play a key role in regulating pathogenesis. C. neoformans is known to secrete several eicosanoids that are highly similar to those found in vertebrate hosts. Using eicosanoid deficient cryptococcal mutants Δplb1 and Δlac1, we demonstrate that prostaglandin E2 is required by C. neoformans for proliferation within macrophages and in vivo during infection. Genetic and pharmacological disruption of host PGE2 synthesis is not required for promotion of cryptococcal growth by eicosanoid production. We find that PGE2 must be dehydrogenated into 15-keto-PGE2 to promote fungal growth, a finding that implicated the host nuclear receptor PPAR-γ. C. neoformans infection of macrophages activates host PPAR-γ and its inhibition is sufficient to abrogate the effect of 15-keto-PGE2 in promoting fungal growth during infection. Thus, we describe the first mechanism of reliance on pathogen-derived eicosanoids in fungal pathogenesis and the specific role of 15-keto-PGE2 and host PPAR-γ in cryptococcosis.


Assuntos
Cryptococcus neoformans/metabolismo , Dinoprostona/análogos & derivados , Eicosanoides/metabolismo , Animais , Animais Geneticamente Modificados , Técnicas de Cultura de Células , Criptococose/metabolismo , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/patogenicidade , Dinoprostona/metabolismo , Dinoprostona/fisiologia , Modelos Animais de Doenças , Eicosanoides/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Macrófagos/microbiologia , PPAR gama/metabolismo , Virulência/fisiologia , Peixe-Zebra/microbiologia
13.
Dis Model Mech ; 11(9)2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30171034

RESUMO

Current peroxisome proliferator-activated receptor (PPAR)-targeted drugs, such as the PPARγ-directed diabetes drug rosiglitazone, are associated with undesirable side effects due to robust agonist activity in non-target tissues. To find new PPAR ligands with fewer toxic effects, we generated transgenic zebrafish that can be screened in high throughput for new tissue-selective PPAR partial agonists. A structural analog of coenzyme Q10 (idebenone) that elicits spatially restricted partial agonist activity for both PPARα and PPARγ was identified. Coenzyme Q10 was also found to bind and activate both PPARs in a similar fashion, suggesting an endogenous role in relaying the states of mitochondria, peroxisomes and cellular redox to the two receptors. Testing idebenone in a mouse model of type 2 diabetes revealed the ability to reverse fatty liver development. These findings indicate new mechanisms of action for both PPARα and PPARγ, and new potential treatment options for nonalcoholic fatty liver disease (NAFLD) and steatosis.This article has an associated First Person interview with the first author of the paper.


Assuntos
Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , PPAR alfa/metabolismo , PPAR gama/metabolismo , Ubiquinona/análogos & derivados , Células 3T3-L1 , Animais , Animais Geneticamente Modificados , Benzoquinonas/química , Benzoquinonas/farmacologia , Benzoquinonas/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Ligantes , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR alfa/agonistas , PPAR gama/agonistas , Ubiquinona/química , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Peixe-Zebra
14.
Trends Genet ; 34(10): 736-745, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30017312

RESUMO

The observation that long noncoding RNAs (lncRNAs) represent the majority of transcripts in humans has led to a rapid increase in interest and study. Most of this interest has focused on their roles in the nucleus. However, increasing evidence is beginning to reveal even more functions outside the nucleus, and even outside cells. Many of these roles are mediated by newly discovered properties, including the ability of lncRNAs to interact with lipids, membranes, and disordered protein domains, and to form differentially soluble RNA-protein sub-organelles. This review explores the possibilities enabled by these new properties and abilities, such as likely roles in exosome formation and function.


Assuntos
Biogênese de Organelas , RNA Longo não Codificante/genética , Transcrição Gênica , Membrana Celular/genética , Núcleo Celular/genética , Humanos , Lipídeos/genética
15.
J Vis Exp ; (128)2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29155736

RESUMO

In our efforts to determine the patterns of expression and subcellular localization of Drosophila RNAs on a genome-wide basis, and in a variety of tissues, we have developed numerous modifications and improvements to our original fluorescent in situ hybridization (FISH) protocol. To facilitate throughput and cost effectiveness, all steps, from probe generation to signal detection, are performed using exon 96-well microtiter plates. Digoxygenin (DIG)-labelled antisense RNA probes are produced using either cDNA clones or genomic DNA as templates. After tissue fixation and permeabilization, probes are hybridized to transcripts of interest and then detected using a succession of anti-DIG antibody conjugated to biotin, streptavidin conjugated to horseradish peroxidase (HRP) and fluorescently conjugated tyramide, which in the presence of HRP, produces a highly reactive intermediate that binds to electron dense regions of immediately adjacent proteins. These amplification and localization steps produce a robust and highly localized signal that facilitates both cellular and subcellular transcript localization. The protocols provided have been optimized to produce highly specific signals in a variety of tissues and developmental stages. References are also provided for additional variations that allow the simultaneous detection of multiple transcripts, or transcripts and proteins, at the same time.


Assuntos
Drosophila/embriologia , Hibridização in Situ Fluorescente/métodos , Animais , Transdução de Sinais
16.
Trends Genet ; 33(10): 665-676, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28870653

RESUMO

The past decade has seen a major increase in the study of noncoding RNAs (ncRNAs). However, there remains a great deal of confusion and debate over the levels of functionality and mechanisms of action of the majority of these new transcripts. This Opinion article addresses several of these issues, focusing particularly on long ncRNAs (lncRNAs). We reemphasize the unique abilities of RNAs to form myriad structures as well as to interact with other RNAs, DNA, and proteins, which provide them with unique and powerful abilities. One of these, the ability to interact sequence specifically with DNA, has been largely overlooked. Accumulating evidence suggests that evolution has taken advantage of RNA's properties via the rapid acquisition of new noncoding genes in testes, with subsequent gains of function in other tissues. This amplification process appears to be one of the major forces driving metazoan evolution and diversity.


Assuntos
RNA Longo não Codificante/genética , Animais , Humanos
17.
Am J Cancer Res ; 7(3): 673-687, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28401020

RESUMO

Regulation of the Hippo pathway via phosphorylation of Yorkie (Yki), the Drosophila homolog of human Yes-associated protein 1, is conserved from Drosophila to humans. Overexpression of a non-phosphorylatable form of Yki induces severe overgrowth in adult fly eyes. Here, we show that yki mRNA associates with microsomal fractions and forms foci that partially colocalize to processing bodies in the vicinity of endoplasmic reticulum. This localization is dependent on a stem-loop (SL) structure in the 3' untranslated region of yki. Surprisingly, expression of SL deleted yki in eye imaginal discs also results in severe overgrowth phenotypes. When the structure of the SL is disrupted, Yki protein levels increase without a significant effect on RNA levels. When the SL is completely removed, protein levels drastically increase, but in this case, due to increased RNA stability. In the latter case, we show that the increased RNA accumulation is due to removal of a putative miR-8 seed sequence in the SL. These data demonstrate the function of two novel regulatory mechanisms, both controlled by the yki SL element, that are essential for proper Hippo pathway mediated growth regulation.

18.
Genes Dev ; 30(5): 594-609, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26944682

RESUMO

In a previous analysis of 2300 mRNAs via whole-mount fluorescent in situ hybridization in cellularizing Drosophila embryos, we found that 70% of the transcripts exhibited some form of subcellular localization. To see whether this prevalence is unique to early Drosophila embryos, we examined ∼8000 transcripts over the full course of embryogenesis and ∼800 transcripts in late third instar larval tissues. The numbers and varieties of new subcellular localization patterns are both striking and revealing. In the much larger cells of the third instar larva, virtually all transcripts observed showed subcellular localization in at least one tissue. We also examined the prevalence and variety of localization mechanisms for >100 long noncoding RNAs. All of these were also found to be expressed and subcellularly localized. Thus, subcellular RNA localization appears to be the norm rather than the exception for both coding and noncoding RNAs. These results, which have been annotated and made available on a recompiled database, provide a rich and unique resource for functional gene analyses, some examples of which are provided.


Assuntos
Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transporte de RNA , RNA Longo não Codificante/metabolismo , RNA não Traduzido/metabolismo , Animais , Drosophila/genética , Embrião não Mamífero , Desenvolvimento Embrionário , Perfilação da Expressão Gênica , Hibridização in Situ Fluorescente
19.
PLoS One ; 10(8): e0132548, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26237434

RESUMO

Synaptic transmission is highly plastic and subject to regulation by a wide variety of neuromodulators and neuropeptides. In the present study, we have examined the role of isoforms of the cytochrome b561 homologue called no extended memory (nemy) in regulation of synaptic strength and plasticity at the neuromuscular junction (NMJ) of third instar larvae in Drosophila. Specifically, we generated two independent excisions of nemy that differentially affect the expression of nemy isoforms. We show that the nemy45 excision, which specifically reduces the expression of the longest splice form of nemy, leads to an increase in stimulus evoked transmitter release and altered synaptic plasticity at the NMJ. Conversely, the nemy26.2 excision, which appears to reduce the expression of all splice forms except the longest splice isoform, shows a reduction in stimulus evoked transmitter release, and enhanced synaptic plasticity. We further show that nemy45 mutants have reduced levels of amidated peptides similar to that observed in peptidyl-glycine hydryoxylating mono-oxygenase (PHM) mutants. In contrast, nemy26.2 mutants show no defects in peptide amidation but rather display a decrease in Tyramine ß hydroxylase activity (TßH). Taken together, these results show non-redundant roles for the different nemy isoforms and shed light on the complex regulation of neuromodulators.


Assuntos
Grupo dos Citocromos b/metabolismo , Proteínas de Drosophila/metabolismo , Junção Neuromuscular/metabolismo , Terminações Pré-Sinápticas/metabolismo , Isoformas de Proteínas/metabolismo , Transmissão Sináptica/fisiologia , Animais , Animais Geneticamente Modificados , Grupo dos Citocromos b/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Plasticidade Neuronal/fisiologia , Isoformas de Proteínas/genética
20.
Genetics ; 200(3): 863-72, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25971667

RESUMO

Germline cells segregate from the soma to maintain their totipotency, but the cellular mechanisms of this segregation are unclear. The Drosophila melanogaster embryo forms a posterior group of primordial germline cells (PGCs) by their division from the syncytial soma. Extended plasma membrane furrows enclose the PGCs in response to the germ plasm protein Germ cell-less (Gcl) and Rho1-actomyosin activity. Recently, we found that loss of the Arf-GEF Steppke (Step) leads to similar Rho1-dependent plasma membrane extensions but from pseudocleavage furrows of the soma. Here, we report that the loss of step also leads to premature formation of a large cell group at the anterior pole of the embryo . These anterior cells lacked germ plasm, but budded and formed at the same time as posterior PGCs, and then divided asynchronously as PGCs also do. With genetic analyses we found that Step normally activates Arf small G proteins and antagonizes Rho1-actomyosin pathways to inhibit anterior cell formation. A uniform distribution of step mRNA around the one-cell embryo cortex suggested that Step restricts cell formation through a global control mechanism. Thus, we examined the effect of Step on PGC formation at the posterior pole. Reducing Gcl or Rho1 levels decreased PGC numbers, but additional step RNAi restored their numbers. Reciprocally, GFP-Step overexpression induced dosage- and Arf-GEF-dependent loss of PGCs, an effect worsened by reducing Gcl or actomyosin pathway activity. We propose that a global distribution of Step normally sets an inhibitory threshold for Rho1 activity to restrict early cell formation to the posterior.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Células Germinativas/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Actomiosina , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas Nucleares , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA